462 research outputs found

    Freshwater shrimp (Palaemonetes australis) as a potential bioindicator of crustacean health

    Get PDF
    Palaemonetes australis is a euryhaline shrimp found in south-western Australian estuaries. To determine if P. australis is a suitable bioindicator species for monitoring the health of estuarine biota, they were exposed to measured concentrations of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P) at 0.01, 0.1 or 1 ppm for 14 days under laboratory conditions. At the end of exposure the shrimp were sacrificed for biomarker [ethoxycoumarin O-deethylase (ECOD), 8-oxo-dG concentration, and sorbitol dehydrogenase (SDH) activity] analyses. Gender did not appear to influence biomarker responses of the shrimp in this study. ECOD activity was induced in the treatment groups in a linear fashion from 3 (0.01 ppm) times to 12 (1 ppm) times the negative controls. 8-oxo-dG concentration was reduced 3 times in treatment groups below the controls suggesting impaired DNA repair pathways. There was no increase in SDH, signifying hepatopancreatic cell damage had not occurred in any treatment group. The response of P australis to B[a]P exposure indicates that this crustacean is suitable bioindicator species for both laboratory studies and field monitoring. A combination of ECOD and SDH activities and 8-oxo-dG concentration represent a suitable suite of biomarkers for environmental monitoring of the sublethal effects of organic pollution to crustaceans from an estuarine environment

    Global Ethics and Nanotechnology: A Comparison of the Nanoethics Environments of the EU and China

    Get PDF
    The following article offers a brief overview of current nanotechnology policy, regulation and ethics in Europe and The People’s Republic of China with the intent of noting (dis)similarities in approach, before focusing on the involvement of the public in science and technology policy (i.e. participatory Technology Assessment). The conclusions of this article are, that (a) in terms of nanosafety as expressed through policy and regulation, China PR and the EU have similar approaches towards, and concerns about, nanotoxicity—the official debate on benefits and risks is not markedly different in the two regions; (b) that there is a similar economic drive behind both regions’ approach to nanodevelopment, the difference being the degree of public concern admitted; and (c) participation in decision-making is fundamentally different in the two regions. Thus in China PR, the focus is on the responsibility of the scientist; in the EU, it is about government accountability to the public. The formulation of a Code of Conduct for scientists in both regions (China PR’s predicted for 2012) reveals both similarity and difference in approach to nanotechnology development. This may change, since individual responsibility alone cannot guide S&T development, and as public participation is increasingly seen globally as integral to governmental decision-making

    A Biopersistence Study following Exposure to Chrysotile Asbestos Alone or in Combination with Fine Particles

    Get PDF
    In designing a study to evaluate the inhalation biopersistence of a chrysotile asbestos that was used as a component of a joint-compound, a feasibility study was initiated to evaluate the short-term biopersistence of the chrysotile alone and of the chrysotile in combination witht the sanded reformulated joint-compound. Two groups of Wistar rats were exposed to either 7RF3 chrysotile (Group 2) or to 7RF3 chrysotile combined with aerosolized sanded joint-compound (Group 3). In addition, a control group was exposed to flltered-air. The chrysotile used in the Ready Mix joint compound is rapidly removed from the lung. The chrysotile alone exposure group had a clearance half-time of fibers L > 20 μm of 2.2 days; in the chrysotile plus sanded exposure group the clearance half-time of fibers L > 20 μm was 2.8 days. However, across all size ranges there was approximately an order of magnitude decrease in the mean number of fibers remaining in the lungs of Group 3 as compared to Group 2 despite similiar aerosol exposures. Histopathological examination showed that the chrysotile exposed lungs had the same appearance as the flltered-air controls. This study uniquely illustrates that additional concurrent exposure to an aerosol of the sanded joint-compound, with large numbers of fine-particles depositing in the lungs, accelerates the recruitment of macrophages, resulting in a tenfold decrease in the number of fibers remaining in the lung. The increased number of macrophages in the chrysotile/sanded joint exposure group was confirmed histologically, with this being the only exposure-related histological finding reported

    Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties

    Get PDF
    Characterizing nanoparticle dispersions and understanding the effect of parameters that alter dispersion properties are important for both environmental applications and toxicity investigations. The role of particle surface area, primary particle size, and crystal phase on TiO2 nanoparticle dispersion properties is reported. Hydrodynamic size, zeta potential, and isoelectric point (IEP) of ten laboratory synthesized TiO2 samples, and one commercial Degussa TiO2 sample (P25) dispersed in different solutions were characterized. Solution ionic strength and pH affect titania dispersion properties. The effect of monovalent (NaCl) and divalent (MgCl2) inert electrolytes on dispersion properties was quantified through their contribution to ionic strength. Increasing titania particle surface area resulted in a decrease in solution pH. At fixed pH, increasing the particle surface area enhanced the collision frequency between particles and led to a higher degree of agglomeration. In addition to the synthesis method, TiO2 isoelectric point was found to be dependent on particle size. As anatase TiO2 primary particle size increased from 6 nm to 104 nm, its IEP decreased from 6.0 to 3.8 that also results in changes in dispersion zeta potential and hydrodynamic size. In contrast to particle size, TiO2 nanoparticle IEP was found to be insensitive to particle crystal structure

    Exposure to Concentrated Coarse Air Pollution Particles Causes Mild Cardiopulmonary Effects in Healthy Young Adults

    Get PDF
    Background: There is ample epidemiologic and toxicologic evidence that exposure to fine particulate matter (PM) air pollution [aerodynamic diameter ≤ 2.5 μm (PM2.5)], which derives primarily from combustion processes, can result in increased mortality and morbidity. There is ess certainty as to the contribution of coarse PM (PM2.5–10), which erives from crustal materials and from mechanical processes, to mortality and morbidity. Objective: To determine whether coarse PM causes cardiopulmonary effects, we exposed 14 healthy young volunteers to coarse concentrated ambient particles (CAPs) and filtered air. Coarse PM concentration averaged 89.0 μg/m3 (range, 23.7–159.6 μg/m3). Volunteers were exposed to coarse CAPs and filtered air for 2 hr while they underwent intermittent exercise in a single-blind, crossover study. We measured pulmonary, cardiac, and hematologic end points before exposure, immediately after exposure, and again 20 hr after exposure. Results: Compared with filtered air exposure, coarse CAP exposure produced a small increase in polymorphonuclear neutrophils in the bronchoalveolar lavage fluid 20 hr postexposure, indicating mild pulmonary inflammation. We observed no changes in pulmonary function. Blood tissue plasminogen activator, which is involved in fibrinolysis, was decreased 20 hr after exposure. The standard deviation of normal-to-normal intervals (SDNN), a measure of overall heart rate variability, also decreased 20 hr after exposure to CAPs. Conclusions: Coarse CAP exposure produces a mild physiologic response in healthy young volunteers approximately 20 hr postexposure. These changes are similar in scope and magnitude to changes we and others have previously reported for volunteers exposed to fine CAPs, suggesting that both size fractions are comparable at inducing cardiopulmonary changes in acute exposure settings. Originally published Environmental Health Perspectives, Vol. 117, No. 7, July 200

    Air pollution from traffic and cancer incidence: a Danish cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vehicle engine exhaust includes ultrafine particles with a large surface area and containing absorbed polycyclic aromatic hydrocarbons, transition metals and other substances. Ultrafine particles and soluble chemicals can be transported from the airways to other organs, such as the liver, kidneys, and brain. Our aim was to investigate whether air pollution from traffic is associated with risk for other cancers than lung cancer.</p> <p>Methods</p> <p>We followed up 54,304 participants in the Danish Diet Cancer and Health cohort for 20 selected cancers in the Danish Cancer Registry, from enrolment in 1993-1997 until 2006, and traced their residential addresses from 1971 onwards in the Central Population Registry. We used modeled concentration of nitrogen oxides (NO<sub>x</sub>) and amount of traffic at the residence as indicators of traffic-related air pollution and used Cox models to estimate incidence rate ratios (IRRs) after adjustment for potential confounders.</p> <p>Results</p> <p>NO<sub>x </sub>at the residence was significantly associated with risks for cervical cancer (IRR, 2.45; 95% confidence interval [CI], 1.01;5.93, per 100 μg/m<sup>3 </sup>NO<sub>x</sub>) and brain cancer (IRR, 2.28; 95% CI, 1.25;4.19, per 100 μg/m<sup>3 </sup>NO<sub>x</sub>).</p> <p>Conclusions</p> <p>This hypothesis-generating study indicates that traffic-related air pollution might increase the risks for cervical and brain cancer, which should be tested in future studies.</p

    Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    Get PDF
    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii
    corecore